Partial regularity results up to the boundary for harmonic maps into a Finsler manifold
نویسندگان
چکیده
منابع مشابه
Optimal Regularity of Harmonic Maps from a Riemannian Manifold into a Static Lorentzian Manifold
positive function. In such a case, we write N = N0 ×β R. In this paper we consider the case where N0 is compact. We may assume, by Nash-Moser theorem, N0 is a submanifold of R for some k > 1. By the compactness of N0, there exist constants βmin, βmax > 0 such that βmin ≤ β(x) ≤ βmax for all x ∈ N0. Let M be a Riemannian manifold with non-empty boundary ∂M . For a map w = (u, t) : M → N0 ×β R, w...
متن کاملBoundary Regularity and the Dirichlet Problem for Harmonic Maps
In a previous paper [10] we developed an interior regularity theory for energy minimizing harmonic maps into Riemannian manifolds. In the first two sections of this paper we prove boundary regularity for energy minimizing maps with prescribed Dirichlet boundary condition. We show that such maps are regular in a full neighborhood of the boundary, assuming appropriate regularity on the manifolds,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2009
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2009.05.001